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Our vision of ubiquitous computing is that our environment will be heavily populated by 
devices under computer control, and that these devices will be interconnected and 
interfaced with each other and with us.  Many of the devices under computer control will 
be sensors that provide a window from the world of interconnected computation into the 
physical world around us.  Our view of ubiquitous computing makes it clear that moving 
ahead in the sensor, effector arena is not sufficient, we also need our computers to be able 
to dialogue, and understand both command and context.  We understand our world, and 
communicate with each other via seeing, hearing, speaking and gesturing.  If we are not 
to become enslaved by our ubiquitous computing environments, they will need to 
communicate with us in the same manner, and understand the context in which such 
dialogues occur.  We focus on what is required of software development tools and 
methods for building the comprehensive vision systems of the embedded computing 
future.  In particular, we present an example of a self-adaptive software architecture for 
vision systems, developed by the first author while at Oxford. 
 

 
 



 
 

We are swiftly moving to a world of ubiquitous computing.  Each year we produce more 
than one processor chip for each person on the planet, and the rate of growth of chip 
production exceeds the population growth rate.  So, by some definition of ubiquitous 
computing it surely is upon us.  For some, though, ubiquitous computing means that we 
all carry devices that enable us to connect to the Internet wherever we happen to be.  
Although it does seem that this will happen, it is not what we mean by ubiquitous 
computing.   
 
Our vision of ubiquitous computing is that our environment will be heavily populated by 
devices under computer control, and that these devices will be interconnected and 
interfaced with each other and with us.  Many of the devices under computer control will 
be sensors that provide a window from the world of interconnected computation into the 
physical world around us.  Today, cars are run by microcontrollers that can sense 
acceleration, engine performance, breaking action, etc.  Tomorrow’s cars will have even 
more processors, connected with each other, sensing ambient temperature, weather 
conditions, other cars, roadside facilities, and communicating with other cars, traffic 
controllers, roadside facilities, and with us. 
 
The major importance of ubiquitous, pervasive, connected computing will be the ability 
for computationally empowered devices to sense the world around us, and to respond by 
changing that world.  There will be a tremendous need for these devices to take direction, 
explain their behavior, and modify their behavior in accord with our directions.  They 
won’t need to communicate with us all the time, but they will always need to be able to 
communicate in those instances when they are unsure or we wish to override.  Needless 
to say, it won’t work (for a variety of reasons) to communicate with these devices via a 
keyboard on our person, or dangling from the device.  Our machines will need to use 
vision and auditory capability to see and hear what is going on in the background, in 
order to establish context, and will need to understand and generate speech to engage in 
dialogue with humans. 
 

Vision for Natural Perceptual Context 
 
Our view of ubiquitous computing makes it clear that moving ahead in the sensor, 
effector arena is not sufficient, we also need our computers to be able to dialogue, and 
understand both command and context.  We understand our world, and communicate 
with each other via seeing, hearing, speaking and gesturing.  If we are not to become 
enslaved by our ubiquitous computing environments, they will need to communicate with 
us in the same manner, and understand the context in which such dialogues occur.  We 
focus on what is required of software development tools and methods for building the 
comprehensive vision systems of the embedded computing future. 

 
The state of the art for vision research is that we can recognize some gestures and faces in 
real time, but general visual context recognition is still elusive.  It is instructive to 



consider in more detail the case of computer vision research, to see where we have come 
to and how we got there. 
 
There has always been a desire to simplify problems.  In the early days this was dealt 
with by building toy world problems.  Toy world problems fell out of favor, and rightly 
so, when it became clear that solutions to toy world problems wouldn’t scale up to 
solving real problems.  For example the early work on understanding images (Waltz 
1975, Clowes 1971, Huffman 1971) attempted to make sense of images that consisted of 
blocks.  Rules for line junction interpretation allowed the lines in the images to be 
understood as three-dimensional blocks.  Unfortunately the lines could not always be 
found in the images unless they were specially enhanced.  The notion that the prerequisite 
lines could be found turned out not to be the case.  Not all boundary lines are visible and 
of course not all objects in the world are blocks.  As analytically interesting as these 
pieces of work were and as influential as they were in helping to understand issues such 
as propagation of constraints they would not directly lead to a solution to the computer 
vision problem.   
 
Since then decades of research focused on low-level vision has yielded many important 
algorithms for solving a wide range of important parts of the computer vision problem 
that can be applied to non-toy problem areas.  Examples include algorithms for 
computing stereo disparities (Marr 1979), algorithms for extracting structure from motion 
(Hildreth 1984), and algorithms that enable us to analyze and represent the rich textures 
found in the real world (Geman 1984).  
 
In spite of the wealth of contributions in these areas and in low-level vision in general, 
advances in high level visual interpretation has been slow to develop.  Success stories in 
computer vision are few and far between.  Computer vision that works is pretty much 
restricted to problem domains that have been carefully constrained.  The lure of the toy 
world or the artificially constrained world is that by carefully controlling the complexity 
of the environment which our programs must operate in we can construct complex 
algorithms that can perform reasonably well.  This is true not just of computer vision but 
also for speech recognition and even robot planning.  Dealing with the complexity of the 
real world is unavoidable in the embedded computing domain.  The 21st Century will 
bring a proliferation of devices with embedded cameras.  Some of these cameras will be 
embedded in robots, some in buildings, and some in vehicles.  These cameras will often 
be deployed in environments that we cannot control.  The challenge will be to take what 
we have learned about low-level vision and to architect visual interpretation systems that 
can reason about the visual interpretation task at hand and about the world that it is 
operating in in order to deliver robust visual interpretations.  The new systems will have 
to respond to the world not just react to it.  Model induction will surpass hand tailored 
models of the world as the unrestricted world represents a large challenge compared to 
the restricted domains in which we have largely operated to date.  Intelligent data-fusion 
will grow in importance as devices proliferate that support multiple sensory modalities.   
 



GRAVA 
The goal of the architecture is to support self-adaptation. The idea behind self-adaptation 
is simple.  The program needs to be able to continually access how well it is doing at its 
task rather than running an algorithm blind as is usually the case in non-adaptive 
programs.  When the self-assessment determines that it is doing poorly the program seeks 
a way of adjusting its structure so as to do better.  The self-adaptive architecture is a 
collection of supporting capabilities that permits this simple approach to self-adaptation 
to work.  The supporting components are as follows: 
 
Self-assessment---the ability of a computational agent to evaluate how well it is doing at 
its current task.  Self-assessment is not so much a component as it is a protocol.  The 
GRAVA architecture provides a protocol for supplying self-assessment functions. 
 
Structure building---the mechanism that constructs a program from a collection of 
computational agents that implements the overall objective of the program.  This 
structure building apparatus is invoked whenever self-adaptation becomes necessary.  
When self-assessment indicates poor performance the system tries to improve by re-
synthesizing its program code.   
 
Reflection---the support for self-understanding within the system.  Reflective systems are 
systems that contain an embedded semantic account of their computational processes to 
some level of detail allowing introspection of the programs state and also semantic 
modification by mutating the semantic account. The embedded semantic account is not 
just a static representation but is intimately involved with the operation of the system.  By 
inspecting the state of the semantic account the system can understand why it is doing 
what it is doing. 
 
To date, reflection has existed as a means whereby a programmer can gain access to the 
computational state of the program.  Sometimes this access is purely introspective.  It is 
easy to implement a debugger on top of a reflective system.  In other cases, the semantics 
may be extended or modified by the programmer.   
 
The role of reflection in the GRAVA architecture is to allow the system to modify itself.  
The idea in this case is that if the program can know why it is doing what it is doing and 
also that it is not doing very well in some aspect of its computation, then the system could 
in principle adjust itself to do what it is doing in a different way and perhaps be more 
successful.  If the system knows why it is doing the thing that it is not doing very well at, 
it may be able to find other ways of achieving what it was trying to do.  If no other ways 
can be found, it will fail at a meta-level, causing a meta- level reorganization.  The way 
that these goals are achieved in GRAVA is by having the meta- level goal of the program 
be described in some form of specification.  Agents are provided that interpret that 
specification and produce a design for a program that would satisfy it.  Agents that are 
built to interpret those parts of the design are then used to interpret the design in the form 
of a program.  The number of levels of meta that lay between the meta-goal of 
the system at the top and the program code at the bottom are arbitrary.  When the ultimate 
program code is run it interprets the image in order to produce its description.  This 



arrangement generates a tower of interpreters.  At each point in the decomposition from 
meta-goals to image interpretation the components at one level are linked to those at a 
higher level that governed their semantics. 
 
The GRAVA architecture described above has been successfully used to implement a 
satellite image interpretation system that self-adapts to changes in the scenes that it is 
interpreting. 
 
Conclusions  
 
Computer Vision is useful as an example in this paper because it provides a glimpse of 
the kind of computing environment that will likely be prevalent in the future.  In the 
future most computation will involve interactions with a complex environment for which 
current software development practices are wholly inadequate.  GRAVA represents the 
first attempt at finding a new paradigm for software capable of providing robust 
performance in complex embedded applications.  The future of computing will be less 
about building large monolithic software systems that try to cover all eventualities and 
more about developing points of capability and specifications for behavior and allowing 
the capabilities to be composed automatically and recomposed dynamically in response 
to changing conditions.  Much more research is required to understand how to build 
systems in this way and to develop tools and methodologies for their construction. 
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